84,888 research outputs found

    Higher genus partition functions of meromorphic conformal field theories

    Full text link
    It is shown that the higher genus vacuum amplitudes of a meromorphic conformal field theory determine the affine symmetry of the theory uniquely, and we give arguments that suggest that also the representation content with respect to this affine symmetry is specified, up to automorphisms of the finite Lie algebra. We illustrate our findings with the self-dual theories at c=16 and c=24; in particular, we give an elementary argument that shows that the vacuum amplitudes of the E_8\times E_8 theory and the Spin(32)/Z_2 theory differ at genus g=5. The fact that the discrepancy only arises at rather high genus is a consequence of the modular properties of higher genus amplitudes at small central charges. In fact, we show that for c\leq 24 the genus one partition function specifies already the partition functions up to g\leq 4 uniquely. Finally we explain how our results generalise to non-meromorphic conformal field theories.Comment: 43 pages, 7 figure

    Aspects of stochastic resonance in reaction-diffusion systems: The nonequilibrium-potential approach

    Full text link
    We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potential's framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh-Nagumo system, a paradigm of the activator-inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it -through an adiabatic-like elimination of the inhibitor field- an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the system's response.Comment: 16 pages, 15 figures, uses svjour.cls and svepj-spec.clo. Minireview to appear in The European Physical Journal Special Topics (issue in memory of Carlos P\'erez-Garc\'{\i}a, edited by H. Mancini

    On the use of the proximity force approximation for deriving limits to short-range gravitational-like interactions from sphere-plane Casimir force experiments

    Get PDF
    We discuss the role of the proximity force approximation in deriving limits to the existence of Yukawian forces - predicted in the submillimeter range by many unification models - from Casimir force experiments using the sphere-plane geometry. Two forms of this approximation are discussed, the first used in most analyses of the residuals from the Casimir force experiments performed so far, and the second recently discussed in this context in R. Decca et al. [Phys. Rev. D 79, 124021 (2009)]. We show that the former form of the proximity force approximation overestimates the expected Yukawa force and that the relative deviation from the exact Yukawa force is of the same order of magnitude, in the realistic experimental settings, as the relative deviation expected between the exact Casimir force and the Casimir force evaluated in the proximity force approximation. This implies both a systematic shift making the actual limits to the Yukawa force weaker than claimed so far, and a degree of uncertainty in the alpha-lambda plane related to the handling of the various approximations used in the theory for both the Casimir and the Yukawa forces. We further argue that the recently discussed form for the proximity force approximation is equivalent, for a geometry made of a generic object interacting with an infinite planar slab, to the usual exact integration of any additive two-body interaction, without any need to invoke approximation schemes. If the planar slab is of finite size, an additional source of systematic error arises due to the breaking of the planar translational invariance of the system, and we finally discuss to what extent this may affect limits obtained on power-law and Yukawa forces.Comment: 11 page, 5 figure

    Comprehensive rate coefficients for electron collision induced transitions in hydrogen

    Full text link
    Energy-changing electron-hydrogen atom collisions are crucial to regulating the energy balance in astrophysical and laboratory plasmas and relevant to the formation of stellar atmospheres, recombination in H-II clouds, primordial recombination, three-body recombination and heating in ultracold and fusion plasmas. Computational modeling of electron-hydrogen collision has been attempted through quantum mechanical scattering state-to-state calculations of transitions involving low-lying energy levels in hydrogen (with principal quantum number n < 7) and at large principal quantum numbers using classical trajectory techniques. Analytical expressions are proposed which interpolates the current quantum mechanical and classical trajectory results for electron-hydrogen scattering in the entire range of energy levels, for nearly all temperature range of interest in astrophysical environments. An asymptotic expression for the Born cross-section is interpolated with a modified expression derived previously for electron-hydrogen scattering in the Rydberg regime using classical trajectory Monte Carlo simulations. The derived formula is compared to existing numerical data for transitions involving low principal quantum numbers, and the dependence of the deviations upon temperature is discussed.Comment: To appear in The Astrophysical Journa
    • …
    corecore